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Abstract. It is well known that a twice continuously differentiable function can be convexified
by a simple quadratic term. Here we show that the convexification is possible also for every
Lipschitz continuously differentiable function. This implies that the Liu–Floudas convexifi-

cation works for, loosely speaking, almost every smooth program occurring in practice.
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1. Introduction

Using the fact that every twice continuously differentiable function can be
convexified, Liu and Floudas have shown in [3] that every nonlinear pro-
gram with these functions can be transformed into an equivalent partly
linear-convex program. One can study such programs by, e.g., parametric
programming [6, 8]. In this paper we show that the convexification of func-
tions and the transformation to partly linear-convex programs is possible
also for Lipschitz continuously differentiable functions.

2. Convexification of Functions

An arbitrary twice continuously differentiable function f: Rn fi R is made
convex after adding to it a quadratic of the form c(x) ¼ )axTx where a is
a sufficiently small number. We will now extend this claim to Lipschitz
continuously differentiable functions. Assume that f is a differentiable func-
tion defined in an open convex region C of the n-dimensional Euclidean
space Rn. Denote by �f(x) its derivative at x, represented as an n-tuple row
vector (gradient); hence �Tf(x) is a column, i.e., a vector in Rn. Using the
norm ||x|| ¼ (xTx)1/2, we say that f is Lipschitz continuously differentiable
in C if

Journal of Global Optimization (2005)32: 401–407 � Springer 2005
DOI 10.1007/s10898-004-3134-4

*Research supported by an NSERC of Canada grant.



jjrTfðxÞ � rTfðyÞjjOLkx� yk ð2:1Þ
for all x,y ˛ C and some constant L P 0 We call L a Lipschitz constant.
This constant is not unique because if L satisfies (2.1), so does every LPL.

REMARK. Lipschitz continuous differentiability is a stronger notion than
continuous differentiability. There exist functions that are continuously,
even twice continuously, differentiable but not Lipschitz continuously dif-
ferentiable, e.g., the scalar function f(t) ¼ 1/t on 0 < t < 1. On the other
hand, there are functions that are Lipschitz continuously differentiable but
not twice continuously differentiable, e.g., f(t) ¼ t2 Æ sgn(t) on the interval
)1 < t < 1. So here we study a different class of functions from those
that are twice continuously differentiable. Lipschitz continuously differen-
tiable functions are extensively used in numerical optimization, e.g., [4].
We denote the Euclidean inner product by (u,v) ¼ uTv.

THEOREM 2.1. If f: Rn fi R is Lipschitz continuously differentiable on a
convex set C with some Lipschitz constant L, then u(x) ¼ f(x) ) 1/2 axTx is
a convex function on C for every aO� L.

Proof. The proof is essentially different from the twice continuously differ-
entiable case. Take x and y in C, x „ y. Then

jðrTfðxÞ � rTfðyÞ; x� yÞjOkrTfðxÞ � rTfðyÞk � kx� yk;
by the Cauchy–Schwarz inequality

OLkx� yk2; by ð2:1Þ:
Hence

jðrTfðxÞ � rTfðyÞ; x� yÞ= kx� yk2jOL:

Using the absolute value property, this implies

�LOðrTfðxÞ � rTfðyÞ; x� yÞ=kx� yk2OL: ð2:2Þ
Hence, for every aO� L, we have

aOðrTfðxÞ � rTfðyÞ;x� yÞ=kx� yk2

and then

ajjx� yjj2OðrTfðxÞ � rTfðyÞ;x� yÞ:
This is the same as

ðrTfðxÞ � rTfðyÞ � aðx� yÞ;x� yÞP0: ð2:3Þ
Using the definition of u, we know that its derivative is �u (x) = �f(x) )
axT. Therefore (2.3) is
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ðrTuðxÞ � rTuðyÞ;x� yÞP0: ð2:4Þ
The inequality holds also if x ¼ y ˛ C, so it holds for every x and y in C.
This means that u is convex on C. (

EXAMPLE 2.2. Consider f: R fi R defined by f(t) ¼ t3 with C ¼ [)2, 2].
Every Lipschitz parameter satisfies L912. Hence u(t) = t3 ) 1/2 at2 is con-
vex on C for every a ¼ �LO� 12.
The proof of Theorem 2.1 uses the left-hand side inequality in (2.2). If

its right-hand side is used for any aPL then one obtains (2.4) with a
reverse inequality. Hence we have the following result.

THEOREM 2.3. If f: Rn fi R is a Lipschitz continuously differentiable on a
convex set C with a Lipschitz constant L, then u(x) ¼ f(x) ) 1/2 axTx is a
concave function on C for every aPL.
Theorem 2.1 can be used to estimate a Lipschitz constant without using
derivatives.

THEOREM 2.4. If f: Rn fi R is Lipschitz continuously differentiable on a
convex set C then every Lipschitz constant L satisfies

�LOf2=½kð1� kÞkx� yk2�gfkfðxÞ þ ð1� kÞfðyÞ � fðkxþ ð1� kÞyÞgOL

for every x ˛ C and y ˛ C, y „ x, and for every 0 < k < 1.

Proof. Let us specify a ¼ )L in u(x). Then u(x) ¼ f(x) + 1/2 L xTx is con-
vex on C, i.e.,

uðkxþ ð1� kÞyÞOkuðxÞ þ ð1� kÞuðyÞ
for every x and y in C and for every 0 6 k 6 1. This is, after substitu-
tion,

fðkxþ ð1� kÞyÞ þ 1=2 L kkxþ ð1� kÞyk2OkffðxÞ þ 1=2 L kxk2g
þ ð1� kÞffðyÞ þ 1=2Lkyk2g:

Hence

fðkxþ ð1� kÞyÞ � kfðxÞ � ð1� kÞfðyÞO� 1=2 Lfkkxþ ð1� kÞyk2

� kkxk2 � ð1� kÞkyk2g
¼ 1=2 Lkð1� kÞkx� yk2

after squaring and rearranging. Now a division by k(1 ) k) ||x ) y||2 > 0
yields the left hand-side inequality. Similarly one uses Theorem 2.3 to esti-
mate the right hand side. (
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COROLLARY 2.5. If f: Rn fi R is Lipschitz continuously differentiable on
a convex set C then every Lipschitz constant L satisfies

�L O½8=kx� yk2� � f½fðxÞ þ fðyÞ�=2� fððxþ yÞ=2ÞgO L ð2:5Þ
for every x ˛ C and y ˛ C, y „ x.

Proof. Specify k ¼ 1/2 in Theorem 2.4.
The above result gives an estimate for L of an arbitrary Lipschitz continu-
ously differentiable function f in terms of the difference between the
midpoint of values and the value of midpoints of f. The estimate is sym-
metric in the sense that the variables x and y are interchangeable. We will
now use this result to estimate the Lipschitz parameter of a non-convex
function.

EXAMPLE 2.6. Consider f(t) ¼ )t2/(1+t) on C ¼ [0, 1]. Estimate (2.5)
becomes

�L O4=½ð1þ sÞð1þ tÞð2þ sþ tÞ�OL

for every 0Os; tO1. The largest value of the function is assumed at
s ¼ t ¼ 0. Hence we estimate LP2. A convexification of f on C is
u(t) ¼ f(t) + t2 ¼ t3/(1+t).

3. Convexification of Programs

In this section we will use the Liu–Floudas transformation to convexify
smooth programs. Let us consider the general non-linear program

Min fðxÞ
(NP)

f iðxÞO0; i 2 P; x 2 C:

Here all functions are assumed to be twice continuously differentiable or
Lipschitz continuously differentiable on an open set containing a non-
empty compact convex set C and P is a finite index set. Let us also assume
that (NP) has a unique globally optimal solution x*. We know that each
function in (NP) can be convexified. If, say, f(x) is convexified by )1/2
axTx, aO� L, then so can be the function f(x) + 1/2 xTh , where h ˛ Rn

is a fixed vector. Let us associate with (NP), for every eP0, the following
class of partly linear-convex programs

Minðx;hÞuðx;hÞ ¼ fðxÞ þ 1=2aðhTx� xTxÞ
ðLFðx;h; eÞÞ

uiðx;hÞ ¼ f iðxÞ þ 1=2aiðhTx� xTxÞO0; i 2 P; kx� hkOe; x 2 C:
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Here a and ai, i ˛ P are some fixed sufficiently small numbers for which
u(x,h) and ui (x,h) are convexifications (in the variable x) of f(x) and fi(x),
respectively, i ˛ P. For every h and e, LF(x,h;e) is a convex program in x,
while for every x and e, it is a linear program in h. For the purpose of hav-
ing linear programs in h we use l¥ or l1 norm rather than the Euclidean
norm. Such programs are called partly linear-convex. They can also be
considered as simple convex models and many results on their optimality
and stability from, e.g., [6, 8] are applicable. With the introduction of eP0
the original Liu-Floudas transformation (introduced in [3] for e ¼ 0)
assumes a parametric form. Its purpose is: (i) to ‘‘drive’’ the optimal solu-
tions (x0(e), h0(e)) of LF(x,h;e) to the optimal solution of LF(x,h;0) and (ii)
to allow a bigger feasible set (and more flexibility) in the search for global
optima of the programs LF(x,h;e). One could introduce eP0 also on the
right-hand sides of all implicit constraints without changing the statements
given below.

THEOREM 3.1. Consider (NP) and the class of linear-convex programs
LF(x,h;e). Then the following statements hold:

(i) A point x* is the optimal solution of (NP) if, and only if, (x*, h*) is
the optimal solution of LF(x,h;0) where x* ¼ h*.

(ii) Program (NP) has a unique optimal solution if, and only if, program
LF(x,h;0) has a unique optimal solution.

(iii)Point x* is the optimal solution of (NP) if, and only if,

x� ¼ lime!0 x
0ðeÞ and h� ¼ lime!0 h0ðeÞ with x� ¼ h�:

Proof. (i) This claim is ‘‘obvious’’, e.g., [3]. (ii) This is a consequence of (i)
and the fact that (NP) is assumed to have a unique solution. So only (iii)
remains to be proved. We give a slightly different proof from the one given
in [8]. Choose an arbitrary sequence of e > 0, e fi 0. Since C is a compact
set, a sequence of optimal solutions (x0(e), h0(e)) exists. Hence their limits
x* and h* exist. Since the functions are continuous, the feasible set map-
ping is closed. Therefore (x*, h*) is a feasible point of LF(x,h;0). But this is
also the optimal point of the program LF(x,h;0) . If not, then there would
exist another feasible point, say, (u,v) such that

uðu; vÞ < uðx�; h�Þ
But this point is feasible also for every program LF(x,h;e) with e > 0.
Now, by continuity of the objective function, (3.1) implies

uðu; vÞ < uðx; hÞ
for every x and h in some neighborhood of (x*, h*). This violates global
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optimality of points (x0(e), h0(e)). Continuity of the norm implies x* ¼ h*.
Hence x* solves (NP) by statement (i). h

The above theorem shows that the optimal solutions of programs with
twice continuously differentiable functions, or programs having Lipschitz
continuously differentiable functions, are limit points of optimal solutions
of suitable linear programs and also of suitable convex programs. It also
shows that the feasible set of LF(x,h;e) is lower semi-continuous at optimal
h ¼ h* and e ¼ 0 relative to feasible perturbations; e.g., [6, 8].The practical
success of the convexification depends on the ability to calculate global
optima of partly linear-convex programs; e.g., [1, 2, 4–6]. The convexifica-
tion technique has been used by the author and his students to solve
diverse problems: from finding roots of a polynomial and solutions of sys-
tems of non-linear equations (see also [7]), and finding optimal steering
angles in Zermelo’s navigation problems, to solving profit maximization
problems in oil industry. In particular, the Oilco NLP problem from [5,
pp. 663–666] has been studied in detail in [1]. The problem has 18 variables
and 29 constraints, some of these non-convex. Using convexification and
LINGO, many globally optimal solutions are found in [1] that are essen-
tially different from the one given in [5]. This has resulted in a lexico-
graphic formulation of the problem.

4. Conclusion

We have shown that every Lipschitz continuously differentiable function
can be represented as the difference of a convex and a quadratic concave
function. Using this fact every mathematical program with Lipschitz con-
tinuously differentiable functions can be reduced, by the Liu–Floudas con-
vexification, to a partly linear-convex program.
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